Tail Distribution Estimates of Fractional CIR Model

نویسندگان

چکیده

The aim of this work is to study the tail distribution Cox–Ingersoll–Ross (CIR) model driven by fractional Brownian motion. We first prove existence and uniqueness solution. Then based on techniques Malliavin calculus a result established recently in [1], we obtain an explicit estimate for distributions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rademacher Chaos: Tail Estimates Vs Limit Theorems

We study Rademacher chaos indexed by a sparse set which has a fractional combinatorial dimension. We obtain tail estimates for finite sums and a normal limit theorem as the size tends to infinity. The tails for finite sums may be much larger that the tails of the limit.

متن کامل

The Deletion Method For Upper Tail Estimates

We present a new method to show concentration of the upper tail of random variables that can be written as sums of variables with plenty of independence. We compare our method with the martingale method by Kim and Vu, which often leads to similar results. Some applications are given to the number XG of copies of a graph G in the random graph G(n, p). In particular, for G = K4 and G = C4 we impr...

متن کامل

Upper Tail Estimates with Combinatorial Proofs

We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one by Impagliazzo and Kabanets (RANDOM, 2010). In particular, we prove a randomized version of the hitting property of expander random walks and use it to obtain an optimal expander random walk concentration bound settling a question asked by Impagliazzo and Kabanets. Next, we obtain an upper tail boun...

متن کامل

Fractional Moment Estimates for Random Unitary Operators

We consider unitary analogs of d−dimensional Anderson models on l2(Zd) defined by the product Uω = DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on parameters controlling the size of its off-diagonal elements. We adapt the method of Aizenman-Molchanov to get exponential estimates o...

متن کامل

Strichartz Type Estimates for Fractional Heat Equations

We obtain Strichartz estimates for the fractional heat equations by using both the abstract Strichartz estimates of Keel-Tao and the HardyLittlewood-Sobolev inequality. We also prove an endpoint homogeneous Strichartz estimate via replacing L∞x (R ) by BMOx(R) and a parabolic homogeneous Strichartz estimate. Meanwhile, we generalize the Strichartz estimates by replacing the Lebesgue spaces with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: VNU Journal of Science: Mathematics - Physics

سال: 2022

ISSN: ['2588-1124', '2615-9341']

DOI: https://doi.org/10.25073/2588-1124/vnumap.4710